

First International Tropospheric Airborne Measurement Evaluation Panel (TAbMEP) Meeting

Internal Estimate of Random Uncertainties

Peter Parker NASA Langley Research Center

August 19, 2008

Measurement Process

- Goal: A unified database of airborne measurements (species: gas, particulate, met, and radiative) with quantified uncertainty
- During a flight, measurements of species and parameters are obtained
 - Let each measurement be x_i
 - Measurement frequency depends on instrument

• Over a subspace (temporal and spatial) of a flight we might expect to measure a statistically stable level of the species, e.g. CO

– mean of CO (μ_{CO}) and natural variability of CO (σ_{CO})

• Within this space we can further partition into time periods of length *t*

What do we actually measure?

• Goal is to estimate (μ_{CO} , σ_{CO})

Let \overline{x} be the mean of multiple measurements over time *t* precision of \overline{x} is a function of time (no. of samples, *n*)

Expectation or mean, denoted by E[]

 $E[\overline{x}] = E[x_i] = \mu_{CO} + \delta$, where δ is the instrument calibration bias δ is determined by comparison to a calibration standard (systematic) δ can be a function of the level of *x* (e.g. nonlinear)

Variance, denoted by V[]

 $V[x_i] = \sigma_{CO}^2 + \sigma_{\varepsilon}^2, \text{ where } \sigma_{\varepsilon}^2 \text{ is the instrument precision (variability)}$ $\sigma_{\varepsilon}^2 \text{ is the random variability of the instrument}$ $\sigma_{\varepsilon}^2 \text{ can be estimated internally during the flight, under certain assumptions}$ $V[\overline{x}] = \left(\sigma_{CO}^2 + \sigma_{\varepsilon}^2\right) / n$

Note total measurement uncertainty , $TMU = \sqrt{\delta^2 + \sigma_{\varepsilon}^2}$

An Internal Estimate of Precision

- If we choose *t* small enough, assume σ_{CO} to be small relative to σ_{ε}
- Partition flight data into subsets of size t and compute multiple estimates of σ_ϵ
- How long should *t* be?
 - depends on the temporal and spatial variability of the species or parameter of interest
 - depends on instrument sampling rate
 - requires expert judgment
- To quantitatively test our judgment, we can plot σ_{ε} estimates for varying *t*, and estimate the mean value
 - look for our estimate of σ_{ε} to be robust over small range of t
 - If calibration precision is available (component of TMU), then we can compare to the internal estimate

Internal Estimate Plot (Chen)

- Note that the mode of the distribution is relatively constant over the range of *t* from 40-120 seconds
- If the standard deviation increases with longer times, it indicates the introduction of other components of variability (due to species)
 - assumes shortest t was chosen to exclude species variability

• Consider two aircrafts, let x and y be the measurements from each

$$E[\overline{x}] = \mu_{CO} + \delta_1 , \quad V[\overline{x}] = \sigma_{\varepsilon_1}^2 / n_1 \text{ (assumes } \sigma_{CO}^2 = 0 \text{ over } t)$$
$$E[\overline{y}] = \mu_{CO} + \delta_2 , \quad V[\overline{y}] = \sigma_{\varepsilon_2}^2 / n_2 \text{ (assumes } \sigma_{CO}^2 = 0 \text{ over } t)$$

Let z be the combined (unified) estimate of CO, consider a simple average

$$z = \frac{\overline{x} + \overline{y}}{2}$$
$$E[z] = \mu_{CO} + \frac{1}{2}\delta_1 + \frac{1}{2}\delta_2$$
$$V[z] = \sigma_z^2 = \frac{1}{4n_1}\sigma_{\varepsilon_1}^2 + \frac{1}{4n_2}\sigma_{\varepsilon_2}^2, \text{ assumes } \operatorname{cov}(x, y) = 0$$

- Bias contribution from each instrument is reduced still present
- Assumes equal weight (uncertainty) of measurements

Weighted Combination of Measurements

• If we have more information about the total measurement uncertainty, bias, and/or precision, consider a weighted average

 $z = \frac{(w_1)\overline{x} + (w_2)\overline{y}}{(w_1 + w_2)} \qquad \text{if } w_1 = w_2 \text{, it becomes a simple average}$ Let $k_1 = w_1/(w_1 + w_2)$, $k_2 = w_2/(w_1 + w_2)$ $E[z] = \mu_{CO} + k_1\delta_1 + k_2\delta_2$ $V[z] = \sigma_z^2 = \frac{k_1^2}{n_1}\sigma_{\varepsilon_1}^2 + \frac{k_2^2}{n_2}\sigma_{\varepsilon_2}^2$

assumes w's are constants, cov(x, y) = 0, $\sigma_{CO}^2 = 0$ over t

• The weights could be based on calibration information or an internal estimate of precision as follows

$$z = \frac{\left(\frac{1}{\sigma_{\varepsilon_1}^2}\right)\overline{x} + \left(\frac{1}{\sigma_{\varepsilon_2}^2}\right)\overline{y}}{\left(\frac{1}{\sigma_{\varepsilon_1}^2} + \frac{1}{\sigma_{\varepsilon_2}^2}\right)}$$

Summary

- Using knowledge of species temporal and spatial variation, allows for partitioning of the flight to isolate instrument precision
- A simple decomposition of measurements into components illustrates instrument uncertainty contributions
- Proposed a method an internal estimate of instrument precision from in-flight data, with a graphical test of validity
- Proposed a formulation of uncertainty estimates for
 - single aircraft campaigns
 - combining two (or more) instruments
- Method is generally applicable to all species and parameters
 - limitations may depend on available data