Difference in time response: MC and CIMS

Response function

$C(t)=\left(1-\alpha_{1}-\alpha_{2}\right) C I T(t)+\alpha_{1} \frac{\left.\int_{t-2 \tau_{1}}^{t} \operatorname{CIT}\left(t_{i}\right) \exp \left(-\left(t-t_{i}\right) / \tau_{1}\right)\right) d t}{\left.\int_{t-2 \tau_{1}}^{t} \exp \left(-\left(t-t_{i}\right) / \tau_{1}\right)\right) d t}+\alpha_{2} \frac{\left.\int_{t-2 \tau_{2}}^{t} \operatorname{CIT}\left(t_{i}\right) \exp \left(-\left(t-t_{i}\right) / \tau_{2}\right)\right) d t}{\left.\int_{t-2 \tau_{2}}^{t} \exp \left(-\left(t-t_{i}\right) / \tau_{2}\right)\right) d t}$

The time response of the $\mathrm{CIMS} \mathrm{HNO}_{3}$ signal has been degraded by the a bi-exponential to best match the MC nitrate signal for a stratospheric plume on 4/9/2008.
We find $\tau_{1}=15$ and $\tau_{2}=90 \mathrm{~min}$.

One-to-one figure shows bias both positive and negative. Poor correlation.

We apply the same time-constants to the $\mathrm{AMS} \mathrm{NO}_{3}^{-}$as was determined by CU for SO_{4}^{-}. Additionally, we find that the AMS $\mathrm{NO}_{3}-$ must be multiplied by 1.4, perhaps due to evaporation of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in the AMS inlet, to minimize the differences that correlate with aerosol.

Applying both the aerosol and timeconstant corrections removes most of the bias. Although the correlation is substantially improved, there appears to be a $\sim 15 \%$ bias between the instruments. Although well within the stated uncertainly, we believe that this bias may reflect an error in the CIMS calibration.

ARCTAS I

ARCTAS I

ARCTAS I

Comment

- The response time-constants used here do not work perfectly for all plumes - it is likely that the time response of the inlets vary with other parameters (e.g. temperature, humidity) Nevertheless, they (together with the aerosol correction) work reasonably well substantially explaining most of the differences between the MC and the CIT CIMS observations.

NOy budget - ARCTAS I

$\mathrm{NOy}=\mathrm{NO}+\mathrm{NO} 2+1.15^{\star} \mathrm{HNO}_{\mathrm{CIT}}+\left(\mathrm{PNs}+0.2^{\star} \mathrm{PNs}\right)^{\star} 0.9+\mathrm{ClONO} 2+\mathrm{N} 2 \mathrm{O} 5$

NOy Comments

- HNO_{3} scalar derived from $\mathrm{CIMS} / \mathrm{MC}$ bias assuming the error is in CIMS
- PN scalar derived from UCB/NCAR NO_{2} comparison during ARCTAS I. Alkyl nitrates estimated to be $0.2 \times$ PN consistent with ARCTAS II and III
- Stratospheric ClONO_{2} estimated to be 50% of Cl_{y} which is calculated from loss of CFC's (max $\mathrm{ClONO}_{2}=$ 130 pptv). This estimate from ACE-FTS observations at this time of year.
- $\mathrm{N}_{2} \mathrm{O}_{5}$ estimated from Langley box model (max $\mathrm{N}_{2} \mathrm{O}_{5}=$ 50 pptv).

