TAbMEP Assessment: ICARTT Wind Speed Measurements

1. Introduction

Here we provide the assessment for the wind speed measurements taken from two aircraft platforms during the summer 2004 ICARTT field campaign [*Fehsenfeld et al.*, 2006, *Singh et al.*, 2006]. This assessment is based upon the three wing-tip-to-wing-tip intercomparison flights conducted during the field campaign. Recommendations provided here offer TAbMEP assessed uncertainties for each of the measurements and a systematic approach to unifying the ICARTT wind speed data for any integrated analysis. These recommendations are directly derived from the instrument performance demonstrated during the ICARTT measurement comparison exercises and are not to be extrapolated beyond this campaign.

2. ICARTT Wind speed Measurements

Due to the data reporting problems for BAe-146, the ICARTT wind speed intercomparison was limited to between the DC-8 and WP-3D. Table 1 summarizes the measurement techniques and gives references for more information. A brief description of the DC-8 measurement is also given in the Wind Speed Appendix.

Aircraft	Instrument	Reference	
NASA DC-8	Delco Carousel IV-3 Inertial Navigation System (INS)	Delco Electronics [1977]	
NOAA WP-3D	Not Available	Not Available	

Table 1. Wind Speed measurements deployed on aircraft during ICARTT

3. Summary of Results

Table 2 summarizes the assessed 2σ precisions, biases, and uncertainties. More detailed descriptions are provided to illustrate the process for assessment of bias and precision in Sections 4.1 and 4.2 respectively. The assessed 2σ precisions reported in Table 2 are equal to twice the highest adjusted precision value for that instrument listed in Table 4. Table 2 also reports an assessed bias (see Section 4.1 for details) that can be applied to maximize the consistency between the data sets. The assessed bias should be subtracted from the reported data to 'unify' the data sets. The assessed bias is derived from intercomparison periods only and may be extrapolated to the entire mission if one assumes instrument performance remained constant throughout the mission. The recommended 2σ uncertainty is the larger of either the uncertainty reported by the PI or the quadrature-sum of the assessed 2σ precision and assessed bias listed in Table 2. It is noted here that the actual wind speed measurement uncertainty varies with the relative direction of the aircraft heading are parallel and tends to minimize when the wind direction and aircraft heading are orthogonal (see Wind Speed Appendix for further details).

Aircraft/ Instrument	Reported Uncertainty ^a (m/s)	Assessed 2σ Precision (m/s)	Assessed Bias (m/s)	Recommended 2σ Uncertainty ^b
NASA DC-8 INS	3.1	2.9	-0.045 + 0.01WindSpeed _{DC8}	3.1
NOAA WP-3D Not Available	3.1	0.9	0.046 - 0.01WindSpeed _{WP3D}	3.1

Table 2. Recommended ICARTT Wind Speed measurement treatment

^aSee text for details or contact PIs for more information. (J. Barrick on DC-8, <u>john.d.barrick@nasa.gov</u>) ^bThese recommendations based on tests ranging from 0.1 to 30 (m s⁻¹).

Figures 1a through 1c display the precisions, biases, and recommended uncertainties for the two wind speed instruments. For all aircraft measurements, the PI reported uncertainty is adequate for wind speed from 0.1 to 30 m s⁻¹.

Figure 1. 2σ precision (panel a), bias (panel b), and 2σ uncertainty (panel c) for DC-8 (black) and WP-3D (red) as a function of wind speed. Values were calculated based upon data shown in Table 2.

4. Results and Discussion

4.1 Bias Analysis

Section 3.3 in the introduction describes the process used to determine the best estimate bias. The linear relationships listed in Table 3 were derived from the regression equations found in Figure 3. The reference standard for comparison (RSC), as defined in the introduction, is constructed by averaging the NOAA WP-3D and NASA DC-8. The resulting RSC can be expressed as a function of the DC-8 wind speed measurement as the following:

 $RSC_{WindSpeed} = 0.045 + 0.99 WindSpeed_{DC8}$

The RSC is then used to calculate the best estimate bias as described in section 3.3 of the introduction. It should be noted that the initial choice of the reference instrument (DC-8) is arbitrary, and has no impact on the final recommendations. Table 3 summarizes the assessed measurement bias for each of the two ICARTT wind speed measurements.

Aircraft/ Instrument	Linear Relationships ^a	Best Estimate Bias (a + b WindSpeed) (m/s)	
NASA DC-8 INS	$WindSpeed_{DC8} = 0.00 + 1.00WindSpeed_{DC8}$	-0.045 + 0.01WindSpeed _{DC8}	
NOAA WP-3D Not Available	$WindSpeed_{WP3D} = 0.09 + 0.98WindSpeed_{DC8}$	0.046 - 0.01WindSpeed _{WP3D}	

Table 3. ICARTT Wind Speed bias estimates

^aDerived from Fig. 3.

4.2 Precision Analysis

A detailed description of the precision assessment is given in section 3.1 of the introduction. The IEIP precision, expected variability, observed variability, and the adjusted precision are summarized in Table 4. Based on the results presented in Table 4, the largest "adjusted precision" value is taken as a conservative precision estimate for each ICARTT wind speed instrument and twice that value is listed in Table 2 as the assessed 2σ precision.

To minimize the effect of bias, we make corrections for bias before computing the observed variability, as the bias may have a significant impact on the observed variability. Figure 4 shows the magnitude of the bias for each intercomparison. The assessed values of the observed variability are displayed in Figure 5. The final analysis results are shown in Table 2. Over 90% of the data falls within the combined recommended uncertainties for each intercomparison, which is consistent with the TAbMEP guideline for unified data sets.

Flight	Platform	IEIP Precision	Expected Variability	Observed Variability	Adjusted Precision
		(m/s)	(m/s)	(m/s)	(m/s)
07/22	DC-8	0.30	0.21	0.61	0.59
	WP-3D	0.08	0.51		0.16
07/31	DC-8	0.26	0.28	0.57	0.52
	WP-3D	0.11	0.28		0.22
08/07	DC-8	0.27	0.28	1.52	1.46
	WP-3D	0.08			0.43

Table 4. ICARTT Wind Speed precision (1σ) comparisons

Figure 2. (left panels) Time series of wind speed measurements and aircraft altitudes from two aircraft on the three intercomparison flights between the NASA DC-8 and the NOAA WP-3D. (right panels) Correlations between the wind speed measurements on the two aircraft.

Figure 3. Correlation between the wind speed measurements on the DC-8 and WP-3D for 7/22, 7/31, and 8/7 2004.

Figure 4. Difference between wind speed measurements from the three DC-8/WP-3D intercomparison flights as a function of the WP-3D wind speed. The dashed lines indicate the range of results expected from the reported measurement uncertainties.

Figure 5. Difference between unified measurements of wind speed from the three DC-8/WP-3D intercomparison flights as a function of the WP-3D wind speed. Corrections were made to all data sets to account for bias.

References

Fehsenfeld, F. C., et al. (2006), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe—Overview of the 2004 summer field study, J. Geophys. Res., 111, D23S01, doi:10.1029/2006JD007829.

Singh, H. B., et al. (2006), Overview of the summer 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A), J. Geophys. Res., 111, D24S01, doi:10.1029/2006JD007905.

Wind Speed Appendix

DC-8 Aircraft Measurements of Wind Speed and Wind Direction

The DC-8 aircraft wind speed and wind direction are calculated parameters derived via the aircraft inertial navigation system and air data computer. As shown in the figure on the right, these quantities are obtained using vector subtraction between the vector defined by aircraft heading and true airspeed (i.e., air vector) and ground track and ground speed (i.e., ground vector). The difficulty in obtaining accurate wind speed and wind direction is partially due to the air vector and ground vectors being much larger in magnitude than that of the wind vector. The specified wind speed measurement precision of 3 ms-1 is based on the overall assessment. The uncertainties associated with the calculated wind speed and wind direction also depend on the uncertainties in the air vector and ground vector. Uncertainties associated with wind direction are usually larger for lower wind speed conditions. In general, the wind direction readings are considered to be valid if the wind speed is above 3 ms-1. For the same wind speed, the wind direction and wind speed uncertainties are largest when the wind vector is parallel to the air vector and smallest when the wind vector is perpendicular to the air vector. The wind speed and wind direction uncertainties are also influenced by the flight path, where straight and level flight legs produce the best results.

