Ozone Transport and Mixing Processes in the Boundary Layer Observed with Lidar during Discover-AQ

C. J. Senff, A. O. Langford, R. J. Alvarez II, A. Choukulkar, Wm. A. Brewer, A. M. Weickmann, G. Kirgis, S. P. Sandberg, R. M. Hardesty, R. Delgado, R. Long, S. S. Brown, E. Olson

- Motivation \& instrument description
- DAQ Houston 25 Sep 2013: vertical mixing, sea breeze
- DAQ Colorado 8 Aug 2014: thunderstorm outflow
- Summary

AGU Fall Meeting, 15 Dec 2014

DiscoverAQ objective:

Characterize relationship between surface and column observations of AQ-relevant trace gases and aerosols
\rightarrow Understand the processes controlling their vertical distribution and diurnal variation, especially in the highly variable BL

BL structure \& mixing

Horizontal advection
(e.g. sea breeze, tstorm outflow, LLJ)

Lidar is ideal tool to study these processes because of its continuous profiling capabilities

NOAA TOPAZ Ozone Lidar at Discover AQ

$>$ Characterize the distribution of ozone in the lower atmosphere and study the processes responsible for the observed O_{3} structure

DAQ Houston 2013, La Porte Airport 29 Aug - 27 Sep 2013, ~140 hours

DAQ Colorado 2014/FRAPPE, BAO Tower 9 Jul - 18 Aug 2014, ~240 hours

Tropospheric Ozone Lidar Network (www-air.larc.nasa.gov/missions/TOLNet/)

NOAA TOPAZ Ozone Lidar

(TOPAZ = Tunable Optical Profiler for Aerosol and oZone)

> Tunable UV ozone differential absorption lidar (DIAL)
> Ozone and aerosol backscatter profiles from ~15 m up to 3 km AGL

Composite vertical profiles every 5 min

TOPAZ Ozone Lidar at DAQ Houston

$>$ La Porte Airport
 > 29 Aug - 27 Sep 2013

Evolution of O_{3}, aerosol, and mixing height on 25 Sep 2013

Wind profiler 12-hour back trajectories from La Porte Airport on 25 Sep 2013 16:00 CDT

Wind profiler 12-hour back trajectories from La Porte Airport on 25 Sep 2013 20:00 CDT

Surface vs. column O_{3} : 25 Sep 2013

TOPAZ Ozone Lidar at DAQ Colorado / FRAPPE

> BAO Tower
 > 9 Jul - 18 Aug 2014

BAO Tower

UW

Evolution of O_{3}, aerosol, and mixing height on 8 Aug 2014

8 Aug 2014

HRDL 12-hour back trajectories from BAO

8 Aug 2014

HRDL 12-hour back trajectories from BAO

8 Aug 2014

HRDL 12-hour back trajectories from BAO

Surface vs. column $\mathrm{O}_{3}: 8$ Aug 2014

Summary

> Suppressed vertical mixing and resulting shallow mixing heights, as well as low-level advection of different air masses by the sea breeze or thunderstorm outflows can cause significant vertical gradients of ozone in the lower atmosphere.
> Under these circumstances, it would be challenging to infer surface ozone (and other AQ trace gas and aerosol) concentrations from lower-atmosphere column observations.
> Future work: Extend column vs surface ozone analysis to include entire data set gathered with TOPAZ ozone lidar during DiscoverAQ

