Ozone Transport and Mixing Processes in the Boundary Layer Observed with Lidar during Discover-AQ

C. J. Senff, A. O. Langford, R. J. Alvarez II, A. Choukulkar, Wm. A. Brewer, A. M. Weickmann, G. Kirgis, S. P. Sandberg, R. M. Hardesty, R. Delgado, R. Long, S. S. Brown, E. Olson

- Motivation & instrument description
- DAQ Houston 25 Sep 2013: vertical mixing, sea breeze
- DAQ Colorado 8 Aug 2014: thunderstorm outflow
- Summary

<u>DiscoverAQ objective:</u>

Characterize relationship between surface and column observations of AQ-relevant trace gases and aerosols

→ Understand the processes controlling their vertical distribution and diurnal variation, especially in the highly variable BL

BL structure & mixing

Horizontal advection (e.g. sea breeze, tstorm outflow, LLJ)

Lidar is ideal tool to study these processes because of its continuous profiling capabilities

NOAA TOPAZ Ozone Lidar at Discover AQ

Characterize the distribution of ozone in the lower atmosphere and study the processes responsible for the observed O₃ structure

DAQ Houston 2013, La Porte Airport 29 Aug – 27 Sep 2013, ~140 hours

DAQ Colorado 2014/FRAPPE, BAO Tower 9 Jul – 18 Aug 2014, ~240 hours

Tropospheric Ozone Lidar Network (www-air.larc.nasa.gov/missions/TOLNet/)

NOAA TOPAZ Ozone Lidar

(TOPAZ = Tunable Optical Profiler for Aerosol and oZone)

- Tunable UV ozone differential absorption lidar (DIAL)
- Ozone and aerosol backscatter profiles from ~15 m up to 3 km AGL

Composite vertical profiles every 5 min

TOPAZ Ozone Lidar at DAQ Houston

- La Porte Airport
- > 29 Aug 27 Sep 2013

Evolution of O₃, aerosol, and mixing height on 25 Sep 2013

Wind profiler 12-hour back trajectories from La Porte Airport on 25 Sep 2013 16:00 CDT

Wind profiler 12-hour back trajectories from La Porte Airport on 25 Sep 2013 20:00 CDT

Surface vs. column O₃: 25 Sep 2013

TOPAZ Ozone Lidar at DAQ Colorado / FRAPPE

Fort Collins-West

BAO Tower

9 Jul – 18 Aug 2014

Evolution of O₃, aerosol, and mixing height on 8 Aug 2014

8 Aug 2014

8 Aug 2014

8 Aug 2014

Surface vs. column O₃: 8 Aug 2014

Summary

- Suppressed vertical mixing and resulting shallow mixing heights, as well as low-level advection of different air masses by the sea breeze or thunderstorm outflows can cause significant vertical gradients of ozone in the lower atmosphere.
- Under these circumstances, it would be challenging to infer surface ozone (and other AQ trace gas and aerosol) concentrations from lower-atmosphere column observations.
- Future work: Extend column vs surface ozone analysis to include entire data set gathered with TOPAZ ozone lidar during DiscoverAQ