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Background

Light absorbing carbonaceous aerosols are known to be an important climatic driver with a global radiative forcing of about half (IPCC, 2013) to two-thirds (Bond et al., 2013) that of the dominant greenhouse
gas, carbon dioxide. While the mass absorption coefficient of of pure black carbon (BC) is fairly well known, observational evidence suggests that BC rapidly mixes with other aerosol chemical components
within hours after emission (Moffet and Prather, 2009; Moteki et al., 2007). These other components may include predominantly scattering organic, sulfate, and nitrate species, as well as light-absorbing, so-
called “brown carbon” (BrC). It has been suggested that the presence of these BC-mixed components may induce mixing-state-dependent lensing effects that could potentially double the BC direct radiative
forcing (Jacobson, 2001). The key to better understanding how BC-rich aerosols are distributed in the atmosphere is to examine an unbiased set of measurements covering broad spatial and temporal scales;
however, many past airborne field campaigns have specifically targeted source plumes or other scientifically-relevant emissions sources. The recent NASA DISCOVER-AQ campaign is unique in that
approximately the same flight pattern was performed over a month-long period in each of four different U.S. metropolitan areas, ensuring an unbiased, or at least less biased, data set with both wide
horizontal and vertical (up to 5 km altitude) coverage. More details as well as data from the four deployments can be obtained from the project website (http://discover-aq.larc.nasa.gov).
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Shown above are the NASA P-3B flight paths for each of the four, DISCOVER-AQ deployments (red lines). Labels denote the location of the vertical spiral profiles and missed approaches, which were collocated with ground-based measurement stations and balloon sondes.

Horizontal Variability of SP2 Refractory Black Carbon

Figures below show the vertical and horizontal variability of refractory black carbon (rBC) measured by by the DMT Single Particle Soot Photometer (SP2). The top row of figures reflects all flights conducted during each deployment, while the bottom figures show example time series for a single
flight. Typically, each flight consists of three circuits (morning, mid-day, and afternoon) in order to capture the relationship between compositional variability and boundary layer dynamics, which are apparent, e.g., for the Moody Tower profile in the Houston, TX, timeseries below (red lines).
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Vertical Profiles of Non-Volatile Aerosol SP2 Refractory Black Carbon Vertical Profiles
Number Concen tra tIOn (Den Uded CPCl The figures below show the vertical distribution of refractory black carbon (rBC) measured by the SP2. The altitude range shows the observational sampling strategy for each deployment
(for example, low level legs were not conducted in the congested airspace near Washington D.C. and the surface is much higher in Denver, CO). All spiral data for a given deployment are
Non-volatile particle number concentration (diameter > 10 nm) was measured using a TSI shown color coded by the spiral site, including morning, mid-day, and afternoon profiles. A well-mixed layer of varying height is apparent in all sets of profiles, but is especially noticeable in
CPC 3772 after thermally denuding the particles at 350 degrees Celsius; total particle the wintertime San Joaquin Valley with its characteristic strong inversion and shallow boundary layer. While there are some notable differences between spiral location for a given
number was measured with an un-denuded CPC 3772. The vertical distribution of non- deployment (e.g., Galveston vs. downtown Houston sites), most spirals within a deployment show a similar structure, which reflects the strong influence of regional meteorology and
2 1 1 H (o) o . o o o o o
volatile number (left column below) mirrors that for mass (far right), with between 20-80% dynamics in driving the aerosol spatial distributions.
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