
Cryogenic Hygrometer and Filter Radiometers

Ali Aknan
Stephanie Vay
Melody Avery
Jim Plant
Charles Hudgins

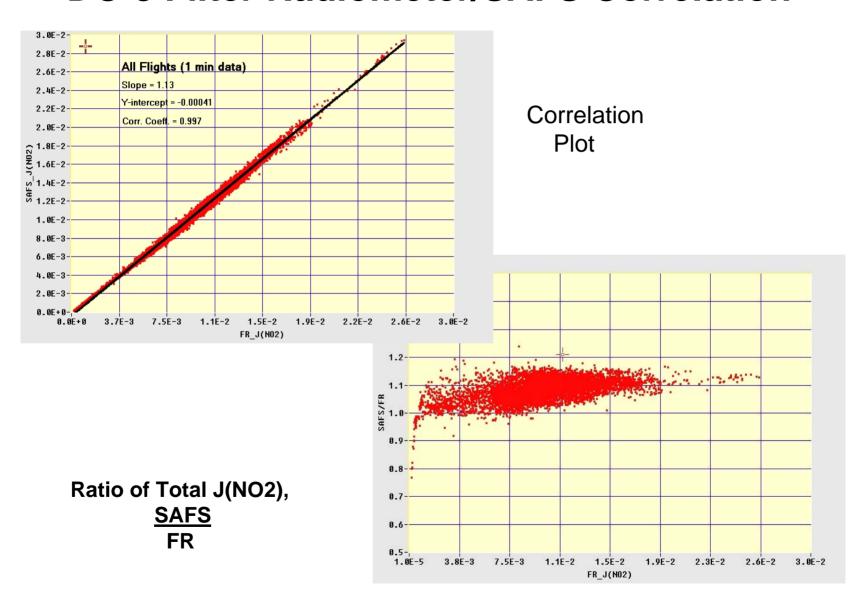
Filter Radiometer - Photolysis Rate of NO₂

$J(NO_2)$ - FILTER RADIOMETER Commercially Available - METCON

_	_	
TECHNIQUE	Solar radiative flux measured with photodiode tube via frosted quartz hemispherical dome and rod for a light guide and optimum glass filters.	
BAND-PASS FILTERS	$310 \rightarrow 420 \text{ nm } (2*\text{UG3} + 1*\text{UG5})$ Restricts output signal to broadband integrated actinic flux - proportional to photolysis rate of NO_2 .	
CALIBRATION	Calibrated with reference $j(NO_2)$ radiometer traceable to a chemical actinometer.	
UNCERTAINTY	10 %	
UNITS	J(NO2)- sec ⁻¹	

J(NO2) Filter Radiometer Calibration

NCAR Marshall Field Site


Rick Shetter Barry Leffer Sam Hall

There are several factors that influence the FR performance:

- Mounting and the use of shadow rings to minimize platform (DC-8) reflections and providing a true hemispherical FOV for each zenith and nadir-viewing radiometer.
- Optics and light guide to provide a good angular response
- Cal factor that accurately translates broadband integrated actinic flux between 310 and 420 nm to *J*(NO2).

(Calibration and intercomparison instrumentation available at the Marshall Field Site include traceable actinometer calibrated master FR's and NCAR actinometer/spectroradiometer systems.

DC-8 Filter Radiometer/SAFS Correlation

IN SITU H2O VAPOR MEASUREMENTS

Cryo Hygrometer

SATURATION MIXING RATIO OF WATER

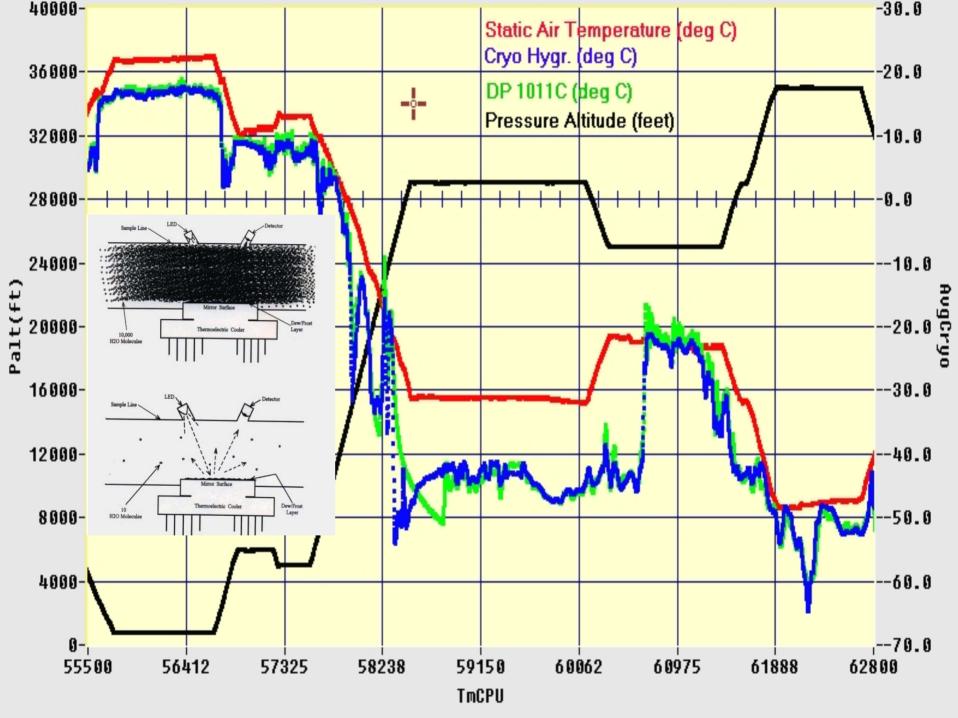
TEMPERATURE (C)

10000

WATER

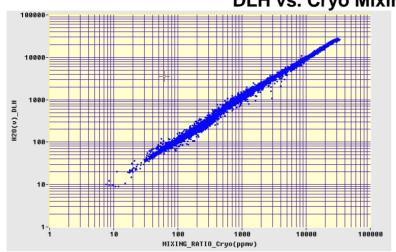
VAPOR

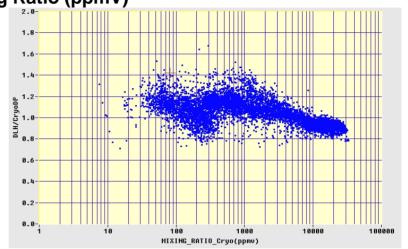
Principal H₂O Vapor Measurement Technique - Chilled Mirror Hygrometry

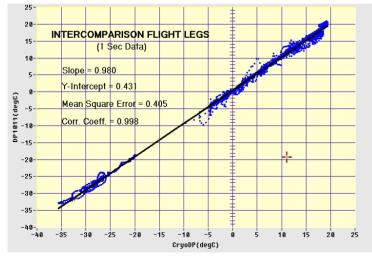

Chilled mirror technique is capable of fundamental accuracy – measures a primary humidity parameter.

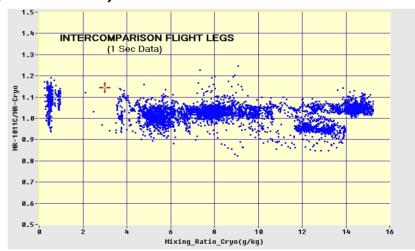
Tropospheric H₂O vapor concentrations vary dynamically over 5-6 orders of magnitude.

Enhance application of H₂O vapor data sets via an understanding of the measurement technique.


"...theoretical calculations and <u>published specs are limited</u> <u>in their descriptions of complex measurement conditions</u>.... no one can anticipate all uses or combinations of environmental conditions to which an instrument will be subjected.


It is <u>important for the user to be aware of the sensors' limitations</u>." Sensors, Oct, 1991


DC-8 Water Vapor Measurement Comparisons


All DC-8 Flights (1 min data)
DLH vs. Cryo Mixing Ratio (ppmV)

Intercomparison Flight Legs Chilled Mirror Hygrometers (Cryo vs. 1011C)

Archived Data

File Name:

cryo_dc8_2004mmdd_ra.ict \rightarrow nav_dc8_2004mmdd_r0.ict

- INSTRUMENT_INFO: Merged data set compiled by combining ICATS Navigation Data + Cryogenic Hygrometer + J(NO2) Filter Radiometer (Zenith and Nadir Viewing)
- R0: J(NO2) corrected for altitude, temperature, and SZA
- R0: Parameters Associated With Water Vapor Are Calculated Using DP_Proj (deg C)
- Source of Proj_DP identified by value identified as FLAG_DP_PROJ (0 Null Data; 1 Cryo; 2 1011C)

Parameters (Measured & Calculated):

- DP_PROJ (degC)
- FLAG DP PROJ
- REL_HUMIDITY_ICE (%)
- REL_HUMIDITY_H2O (%)
- SAT_VAPOR_PRESSURE_H2O (mb)
- SAT VAPOR PRESSURE ICE (mb)
- VAPOR_PRESSURE_H2O (mb)
- VAPOR PRESSURE ICE (mb)
- MIXING_RATIO (g/kg)
- *j*(NO2)Nadir (1/s)
- *j*(NO2)Zenith (1/s)

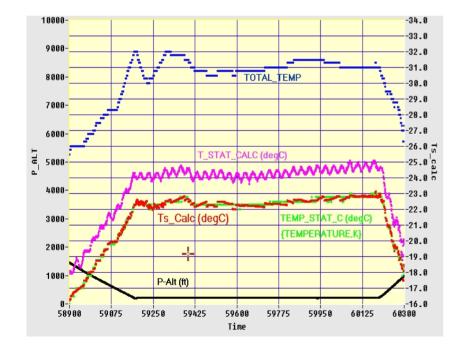
Applied Dew/Frost Point - 101

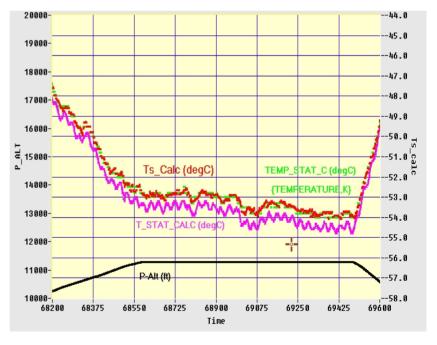
Measured Primary Humidity Parameter = Dew/Frost Point (Deg C)

Calculated Parameters:

```
VAPOR_PRESSURE_H2O (mb) = 6.1121 EXP[17.502 \times T/(240.97 + T)]
VAPOR PRESSURE ICE (mb) = 6.1115 \text{ EXP}[22.452 \times \text{T}/(272.55 + \text{T})]
SAT_VAPOR_PRESSURE_H2O (mb) = 6.1121 EXP[17.502 x T/(240.97 + T)]
SAT VAPOR PRESSURE ICE (mb) = 6.1115 \text{ EXP}[22.452 \times \text{T}/(272.55 + \text{T})]
Where,
   T = Dew/frost point for VAPOR PRESSURE calculations and Static Air Temp. for SAT VAPOR PRESSURE
REL_HUMIDITY_H2O (%) = VAPOR_PRESSURE_H2O (mb)
                                                               x 100
                         SAT VAPOR PRESSURE H2O (mb)
REL HUMIDITY_ICE (%) = VAPOR_PRESSURE_ICE (mb)
                                                               x 100
                         SAT VAPOR PRESSURE ICE (mb)
MIXING RATIO (q/kq) = 0.622 \times 10^3 \text{ (VAPOR PRESSURE)}
                        (STATIC PRESSURE) - (VAPOR PRESSURE)
Where,
   VAPOR_PRESSURE_H2O is used for Dew/Frost Points equal or greater than 0 degC and
   VAPOR PRESSURE ICE for Dew/Frost Points less than 0 degC.
```

Static Air Temperature


File Name:


nav_dc8_2004mmdd_ra.ict \rightarrow nav_dc8_2004mmdd_r0.ict \rightarrow mrgxx_dc8_2004mmdd_r0.ict

Temperature Parameters:

```
TEMP_TOTAL (degC) \rightarrow TEMP_TOTAL (degC) \rightarrow TOTAL_TEMP, K TEMP_STAT_C (degC) \rightarrow TEMP_STAT_C (degC) \rightarrow TEMPERATURE, K
```

TEMP_STAT_CALC (degC) \rightarrow

Comments

- Filter Radiometer and Cryogenic Hygrometer exhibited good correlation with other DC-8 instrument techniques take a another look at differences.
- Good intercomparison with NOAA WP-3D measurements.

Consider dynamic response of instrumentation

and spatial separation for intercomparison

purposes.

Dew/Frost Ambiguity

 \rightarrow \rightarrow

- Super-cooled water
- Utilize descent soundings
- Static Air Temperature
 - Resolution (0.25 deg)
 - Marginal performance

20-		-20.0	
15-		-15.0	
10-	VAPOR PRESSURE ERROR	-10.0	
5-	WATER VS ICE	-5.0	
8-		-0.0	
G -5-		5.0 💆	
0 -5 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		19.8 degC)	
E -15- VAP	OR PRESSURE (ICE)	15.0 🖰	
-20-	· VAPOR PRESSURE (WATER)	20.0	
-25-		25.0	
-30-		30.0	
-35-		35.0	
-48-		40.0	
0.1 1.0 10.0 100.0 Vapor_Press(mb)			

Frost Pt.	Equiv. Dew Pt.	% Vapor Press Err.
-2	-2.3	2
-5	-5.6	5
-10	-11.2	10
-20	-22.2	22