Measuring Tropospheric NO₂ from SCIAMACHY During INTEX and Improving NOx Emission Inventories

Randall Martin Aaron Van Donkelaar

Chris Sioris Kelly Chance Yongtao Hu Armistead Russell

Tom Ryerson

Ron Cohen

UC Berkeley

Bill Brune

Jack Dibb

UNIVERSITY of NEW HAMPSHIRE

Spectral Fit of NO₂

Distinct NO₂ Spectrum

Nonlinear least-squares fitting

 $I_B(\lambda) = A(\lambda)I_0(\lambda)e^{-\sum \tau_s} + Ring$

Wavelength(nm)

Based on Martin et al., 2002

Perform a Radiative Transfer Calculation to Account for Viewing Geometry and Scattering

Based on Martin et al., 2002, 2003

Data Provided for all Cloud Fractions However Use of High Cloud Fraction Data Is Discouraged! Cloud Radiance Fraction <0.4 Recommended in Header

Surface

Sample JPGs Provided For Each Day

SCIAMACHY cloud-filtered measurements for 20040701

Missing Data: Cloudy **Missing Cloud Fields** Satellite Downlink Issues **Typical Individual Measurement Uncertainty** $\pm(1 \times 10^{15} \text{ molec cm}^{-2} + 40\%)$ **Spectral Fit** Stratospheric NO₂ Surface Reflectance Clouds Aerosols

Assumed NO₂ Profile

Preliminary Comparison Between Average Assumed and Measured NO₂ Profiles Need to Continue Analysis for Individual Flights

West of -60 degrees lon, "land"

East of -60 degrees lon, "ocean"

Errorbars Show 17th and 83rd percentiles

Reasonable Agreement Between Coincident SCIAMACHY and In-Situ Cloud-Free Measurements

Difficult Comparison over Source Regions Due to Ambiguous Column Below Aircraft and Spatial Heterogeneity

Coincident measurements
Cloud-radiance fraction < 0.4
In-situ measurements below 1 km
Assume constant mixing ratio below

Chris Sioris

lowest measurement

In situ errorbars show 17th & 83rd percentiles – not completed for DC8

Cloud-filtered Tropospheric NO₂ Columns Observed from the SCIAMACHY Satellite Instrument

 $\pm (5 \times 10^{14} \text{ molec cm}^{-2} + 30\%)$

SCIAMACHY Shows Elevated NOx Export from North America

SCIAMACHY Shows Elevated NOx Export from North America

EMIS: Emissions Mapping Integration Science Optimize North American NO_x Emissions

SCIAMACHY NO₂ Columns

NOx Emissions (SMOKE/G.Tech)

North American NOx Emissions (May – October) Largest Change in Northeastern US Coast

GEOS-CHEM

(NAPAP Scaled to 1998)

SCIAMACHY (2004)

SCIAMACHY - NAPAP

Evaluate Top-Down and Bottom-Up NOx Inventories Conduct GEOS-CHEM Simulation For Each Inventory Sampled GEOS-CHEM Along Flight Tracks

Simulation with SCIAMACHY – Original NOx Emission Inventory

P3-B Measurements Support Top-Down Inventory DC-8 Measurements Inconclusive

Major Discrepancy in NOx Emissions from Megacities

Department 1 Physics/Electrical Engineering

INTEX Workshop

Virginia, USA, March 29, 2005

Intercontinental Transport of NO₂ Observations from GOME and SCIAMACHY

A. Heckel, A. Richter, J. P. Burrows

Institute of Environmental Physics and Institute of Remote Sensing University of Bremen

- Aim:
 - Identification of the typical export pathways in the satellite NO₂ data set
 - Quantification of the export amount and range
 - Impact on European air quality?
- Approach:
 - Using the 10 year GOME and SCIAMACHY time series
 - Detection of outflow events by applying thresholds to the NO₂ tropospheric columns over North Atlantic
 - Counting all events between 01.Jan 1996 and 01.Jul 2003
 - Selection for cloudy / clear scenes
 - Backwards trajectory analysis for selected cases
- Limitations / Problems:
 - Short lifetime of $NO_2 =>$ only "fast" events can be observed
 - Air Mass Factors do not yet account actual profile shape and

Universität Bremen Andre Septer attion volf utransport and lightning NO₂?

Approach

- Longitudinal section between 60°W and 50°W
- Divided into boxes of 5° latitude from 20°N to 60°N
- Columns larger than 1•10¹⁵ molec/cm²
- Area of enhanced values larger than 1•10⁵ km²

First results - Histograms

- NO₂ in situ data were provided by Ronald Cohen, University of California, Berkeley
- GOES and Meteosat IR imagery were provided by UNIDATA and Space Science and Engineering Center (SSEC), University of Wisconsin-Madison
- Owen Cooper from CIRES institute at University Colorado, Boulder
- Trajectories computed by NOAA HYSPLIT Web Interface
- SCIAMACHY Iv0 and Iv1 data were provided by ESA through DLR/DFD
- Financial support by NOAA, NASA, and the University of Bremen

