PENNSTATE

2. NO

OH mod (noty)

OH obs/mod

±

AIT P

HO, Observations and Photochemistry during INTEX-NA

Xinrong Ren Bill Brune Jinggiu Mao Robert Long Bob Lesher Department of Meteorology, Pennsylvania State University, University Park, PA

Jim Crawford Gao Chen NASA Langlev Research Center, Hampton, VA

of 1.3

HO, mod (ppty

HO, obs/mod

Little altitude dependence of observed to modeled OH ratios at all altitudes and HO ratios below 8 km. The model tends to under-predict HO₂ above 9 km.

· Little NO, dependence of observed to modeled OH ratios at all NO, levels and HO₂ ratios when NO₂ is less than a few hundred pptv. The model tends to underpredict HO₂ at higher NO.

 Modeled HO₂/OH ratios are lower than observed HO₂/OH ratios at all altitudes

- The model under-predicted OH and HO₂, with a median obs/mod OH ratio of 0.58 and a median obs/mod HO2 ratio of 0.77, which is very similar to the results during TRACE-P.
- Main P(OH) is O1D+H2O (below 5 km) and HO₂+NO (above 5 km). Main L(OH) is OH+CO/VOC.
- Main P(HO₂) is OH+CO. Main L(HO₂) is HO₂ self-reactions (below 5 km) and HO₂+NO (above 5 km).
- There is a net O₃ loss at altitudes between 1 and 5 km.

Acknowledgements

L(OH) (cm⁻³

<u>. 1000</u>

We thank other groups participating in the INTEX mission for the use of their data in this study.